Math 150, Lecture Notes- Bonds Name

Section 5.1 The Natural Logarithmic Function: Differentiation

The Natural Logarithmic Function

Recall that the General Power Rule

x" +1
x"dx = +C, n+ —1 General Power Rule
n+1
has an important disclaimer—it doesn’t apply when n = — 1. Consequently, you have

not yet found an antiderivative for the function f(x) = 1/x. In this section, you will
use the Second Fundamental Theorem of Calculus to define such a function. This
antiderivative is a function that you have not encountered previously in the text. It is
neither algebraic nor trigonometric, but falls into a new class of functions called
logarithmic functions. This particular function is the natural logarithmic function.

Definition of the Natural Logarithmic Function

The natural logarithmic function is defined by
X l
Inx = 7 d, x> 0.
1

The domain of the natural logarithmic function is the set of all positive real
numbers.

From this definition, you can see that In x is positive for x > 1 and negative for
0 < x < 1, as shown in Figure 5.1. Moreover, In(1) = 0, because the upper and lower
limits of integration are equal when x = 1.
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If x > 1, thenlnx > 0. Figure 5.1 If0 < x < I, thenlnx < 0.




To sketch the graph of y = In x, you can think of the natural logarithmic function
as an antiderivative given by the differential equation

dy _ 1
dx x
Figure 5.2 is a computer-generated graph, called a slope (or direction) field, showing

small line segments of slope 1/x. The graph of y = In x is the solution that passes
through the point (1, 0).

The natural logarithmic function is increasing,
and its graph is concave downward.

Figure 5.2 Figure 5.3

Each small line segment has a slope of %

lim Inx = —o0 and lim Inx = o0
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THEOREM 5.1 Properties of the Natural Logarithmic Function
The natural logarithmic function has the following properties.

1. The domain is (0, co) and the range is (— oo, c0).
2. The function is continuous, increasing, and one-to-one.

3. The graph is concave downward.

Using the definition of the natural logarithmic function, you can prove several
important properties involving operations with natural logarithms. If you are already
familiar with logarithms, you will recognize that these properties are characteristic of
all logarithms.

THEOREM 5.2 Logarithmic Properties

If @ and b are positive numbers and # is rational,
then the following properties are true.

1. In(1) =0
2. In(ab) = Ina + Inb

3. In(@") =nlna

b

4. ln<g> =Ina—Inb




Ex.1 Expanding Logarithmic Expressions

a lnE—
) 9

b. InV/3x + 2 =

c. In—

(x2 +3)2
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The Number e

It is likely that you have studied logarithms in an algebra course. There, without the
benefit of calculus, logarithms would have been defined in terms of a base number.
For example, common logarithms have a base of 10 and therefore log,,10 = 1. (You
will learn more about this in Section 5.5.)

The base for the natural logarithm is defined using the fact that the natural
logarithmic function is continuous, is one-to-one, and has a range of (—oo, 00). So,
there must be a unique real number x such that In x = 1, as shown in Figure 5.5. This
number is denoted by the letter e. It can be shown that e is irrational and has the
following decimal approximation.

e = 2.71828182846

Definition of e

The letter e denotes the positive real number such that

lne=fldt=1.
!

e=272

e is the base for the natural logarithm
because Ine = 1.

If x = ¢" thenlnx = n.
Figure 5.6

Figure 5.5 Once you know that In e = 1, you can use logarithmic properties to evaluate the
natural logarithms of several other numbers. For example, by using the property
In(e”) = nlne
= n(1)
=n

you can evaluate In(e”) for various values of n, as shown in the table and in Figure 5.6.
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Ex.2 Evaluating Natural Logarithmic Expressions

a. In2 =
b. In32 =

c. In0.1 =

The Derivative of the Natural Logarithmic Function

The derivative of the natural logarithmic function is given in Theorem 5.3. The first
part of the theorem follows from the definition of the natural logarithmic function as
an antiderivative. The second part of the theorem is simply the Chain Rule version of

the first part.

THEOREM 5.3 Derivative of the Natural Logarithmic Function
Let u be a differentiable function of x.

| 1 1 !
1. i[ln,\'] ==, x>0 2. Sinu] =~ gl w0
dx X dx u dx u

Ex.3 Differentiation of Logarithmic Functions

a%mam=

n%muuqn=

d
c. E[x Inx] =

d 3] —
d. E[(ln x)3] =



Napier used logarithmic properties to simplify calculations involving products,
quotients, and powers. Of course, given the availability of calculators, there is now
little need for this particular application of logarithms. However, there is great value
in using logarithmic properties to simplify differentiation involving products,
quotients, and powers.

Ex.4 Logarithmic Properties as Aids to Differentiation

Differentiate f(x) = In/x + 1.

Ex.5 Logarithmic Properties as Aids to Differentiation
x(x2 4+ 1)2

Differentiate = In .
f(x) T



Ex.6 Logarithmic Differentiation

Find the derivative of

k-2,
Y x4+ '

Because the natural logarithm is undefined for negative numbers, you will often
encounter expressions of the form In|u|. The following theorem states that you can
differentiate functions of the form y = In|u| as if the absolute value notation was not
present.



THEOREM 5.4 Derivative Involving Absolute Value
If u is a differentiable function of x such that u # 0, then

u

< linfuf] = -

/7
u .

If u > 0, then |u| = u, and the result follows from Theorem 5.3. If u < 0,
then |u| = —u, and you have

< inful] = -[in(~uw)]

Ex.7 Derivative Involving Absolute Value

Find the derivative of

f(x) = In|cos x|.



Ex.8 Finding Relative Extrema

Locate the relative extrema of

y = In(x? + 2x + 3).

y=In(x?+2x +3)

(-1,1n 2)

Relative minimum

The derivative of y changes from negative to
positiveat x = —1.
Figure 5.7




